
 page│1 

Technical Manual 
 DS-CLS10-FRS4 

DS-CLS10-FRS4 

VER 1.0 



 page│2 

Table of Contents 
1. Main Specifications…………………………………………………………………...…………………………3 
2. Get Ready…………………………………………………………………... ……….……………………………….4 

2.1  Wiring……..…….…………………………..……………………………................…………………………4 
3. The Connector Specifies the Table.………………………………………………................…………………….4 

3.1  CN1 (power supply)………………………….……………………………………...............………………...4 
3.2 CN2 (motor wiring)…………..……………………………….…………………………... ……….………....4 
3.3  CN3 (holding brake output)…..…………………….. …………….....................……….……………….....5 
3.4   CN4 (encoder input)...……………………….………………………….....................…………………….5 
3.5  CN5 (I/O)……………………..……………………………….………………..........................………….....7 
3.6  CN6 (IN) / CN7 (OUT)(RS485)..…………….……………………………………......................………….7 
3.7 SW1 (Set the switch)….……..……………………………….………………………......................……....8 

4. Input Loop Diagram..…….………………………………………………………………………...........................9 
5. Output Loop Diagram…...………………………………………………………………………........................11 
6. LED Indicator…………….………………………………………………….......................……………………....12 
7. Form Factor (mm)…..…...……………………………………………………….......................………………...14 
8. Control Parameters……...……………………………………………………………......................…………....14 

8.1  Controller Basic Status (Class 01)………….…………………………………….......................………....14 
8.2 Basic Parameter Settings (Class 02)……………………….……………………….......................……...15 
8.3  Closed-Loop Parameter Setting (Class 04)…………………..………. ……………......................….....15 
8.4 Control Parameters (Class 06)……………...………………………………………….........................….16 
8.5 Input Block Designation (Class 06)………………………….……………………………........................17 
8.6  Output Block Designation (Class 07)……....………………………………. ……………........................18 
8.7  Multi-Segment Position Mode (Class 08)…..………………………………. …………….......................19 

9. Message Format..…..…...…………………………………………………………. ……………........................23 
10. MODBUS Transactions..………………………………………………………………………...........................25 

10.1 Definition of MODBUS Transactions..…….…………………………………………….........................25 
10.2  MODBUS Responds Normally……….…………………….…………………………….........................26 
10.3  MODBUS Exception Response…………...…..……………..……….………………........................…..26 

11. Data Encoding……………………………………………………………………………………...........................26 
12. Definition of Public Function Code and Description of Function Code………... …………….........................27 

12.1 03 (0x03) Read hold registers……………...……………………………………………........................27 
12.2 06 (0x06) Write a single register….….…………………….…………………………….........................29 
12.3 16 (0x10) Write multiple registers………....…..……………..……….………………........................….31 

13. MODBUS Master Node Working Mode…..……………………………………………………...........................34 
14. MODBUS Address Rules….………………………………………………………. ……………........................34 
15. Master/Slave Communication Timing Diagram………………………………….. ……………........................35 
16. RTU Transmission Mode..…………………………………………………………. ……………........................36 
17. CRC Check……………....………………………………………………………….. …………….......................37 
18. Line-MODBUS Definition.………………………………………………………………………..........................41 

Click to return to table of contents 

Contents 



 page│3 

1. Main Specifications

Main Specifications 

Project Content Note 

Model DS-CLS10-FRS4 

Input supply voltage DC 24V~72V 

Maximum output current 6.0A (0-peak)     

Control object motors 2-phase bipolar stepper motor with encoder

Drive mode PWM constant current drive 

Communication interface 

Input 
・Pulse, direction input (configurable as

digital input)
・Number input 7
・Encoder inputs (A, B, Z)
Output
・ 3 digital outputs
・ Encode the signal output

(Differential A, B, Z)

With the exception of the fixed encoder 
output, all other inputs/outputs can be 
freely configured via communication 

Enter the details digitally 

/SV ON (Servo On) 
/RESET (Alarm reset) 
/START (Motor start / stop) 
/JOG (The motor jogs) 
/HOME (Back to zero)     

Digital output details /IN POTISION 
/ALARM 

LED indication Status, fault 

Communication I/F RS485, up to 30 nodes 
MODBUS RTU protocol, baud rate: 
19200bps (preset) or according to 
convention 

Control method 
Location control mode Positioning according to pulse and 

RS485 communication 

Speed control mode Digital instructions 

Form factor ( mm） 156 (L) × 97 (W) × 33.5 (H) Terminal blocks are not included 

weight About 376g Terminal blocks are not included 

Operating  
temperature / humidity 0~45°C, 85%RH or less Prevents condensation 

Save the temperature -10~70°C, 85% or less Prevents condensation 

Ambient gases Protection against corrosive gases 



 page│4 

2. Get Ready
* Be sure to do the following before turning on the power.

2.1  Wiring
1. Be sure to make sure that you refer to the Description Connector Designation Table for wiring.
2. CN1 ： power supply

Please use AWG#20 or above.
3. CN2 ：Motor wiring

4. CN3 ：Holding brake output

5. CN4 ：Encoder wiring

6. CN5 ：Wiring of interface signals
Configure the necessary digital input and digital output signals. The general-purpose inputs /

outputs are isolated by optocouplers. Please prepare the power supply (+24V) for the interface.

Notes The encoder signal is differential output and is not isolated with an 
optocoupler 

7. CN6 ：Wiring for RS485 communication Please use RJ45 connectors. 

8. CN7 ：Wiring for RS485 communication Please use an RJ45 connector. 

9. SW1 ：Eight-step DIP switch, node setting

3. The Connector Specifies the Table
3.1  CN1 (power supply)

Terminal number Icon Pin. Signal name 

CN1 
2 power supply V+ (DC24V～72V) 

1 power supply GND 

Pay attention to the polarity of the power supply when wiring 

Wire specifications: AWG20~AWG16 (multi-stranded wire) 

3.2  CN2 (motor wiring)
Terminal number Icon Pin. Signal name 

CN2 

4 Electric machine A+ 
3 Electric machine B+ 

2 Electric machine A- 

1 Electric machine B- 

Get Ready / The Connector Specifies the Table 



 page│5 

3.3  CN3 (holding brake output)
Terminal number Icon Pin. Signal name 

CN3 
2 BRK+ brake output is positive 

1 BRK - Negative brake output 

3.4  CN4 (encoder input)
Pin. Signal name Pin. Signal name 

1 A+ 2 A- 

3 B+ 4 B- 

5 Z+ 6 Z- 
7 +5V 8 0V 

9 FG 10 NC 

Diagram 

Pay attention to the polarity of the encoder power supply when wiring 

Wire specifications: AWG28~AWG18 (multi-stranded wire)   

 The terminals are spring-retracted and front-wired, making it easy to operate
with a dedicated screwdriver. 
 Use special tools to tighten the terminal blocks

When tightening the terminals, use a screwdriver with

a blade width of 0.4×2.5.

Phoenix Contacts screwdriver
(Product number: 1205037, model SZS 0. 4×2.5) 

 Wiring method:

① Stripping length : 7 ~ 8mm

The terminals are pulled back spring connections and are connected on the front for easy 
operation 

FG 

+5V
Z+ B+ 

A+ 

0V 

Z- B- 

A- 

 

Screwdriver 
size drawing 

Ex 

Do not put a layer of solder on the thread. 
(May result in failure to wire properly) 

The Connector Specifies the Table 



 page│6 

② You can open the terminal points with a standard screwdriver.

③ Insert the wire into the wiring area and remove the screwdriver. The wires are automatically
connected.

Caution 

Observe the following items and be careful not to break the line. 

* When stripping the cladding, do not damage the core.
* When wiring, be careful not to kink the core wire, and the core wire

must not leak to avoid causing a short circuit of the wire.
* Please connect the core wire directly, do not solder. Otherwise, the
wire may be broken due to vibration.

* After wiring, no pressure should be applied to the wires.
* A screwdriver of the specified size and equivalent type must be
used, otherwise there is a risk of damaging the terminal spring.

Wiring area Wiring area 

The Connector Specifies the Table 

The screwdriver is down and 
at the same time to the left 

The screwdriver is down and 
right at the same time   

Terminal points Terminal points 



 page│7 

3.5  CN5 (I/O)
ICON : 

Notes Pin15~20 is the encoder output (differential output), which is optional and 
needs to be indicated when ordering 

3.6  CN6 (IN) / CN7 (OUT) (RS485)
Pin. Signal name Pin. Signal name 

1 NC  2 GND 
3 A Input (RS485) 4 NC 
5 NC  6 B Input (RS485) 

  7  Termination resistance (CN5) 8 Termination resistance (CN5) 

Standard product: RJ45 type × 2 

Look at the position of each pin from the perspective facing the insertion

Pin. Signal name Pin. Signal name Pin. Signal name 
1 COM (IN) 8 IN6- 15 Encoder A+ 
2 IN1 9 IN7+ 16 Encoder A- 
3 IN2 10 IN7- 17 Encoder B+ 
4 IN3 11 OUT1 18 Encoder B- 
5 IN4 12 OUT2 19 Encoder Z+ 
6 IN5 13 OUT3 20 Encoder Z- 
7 IN6+ 14 COM (OUT) 

17 15 11 13 

16 12 14 

1 3 7 5 

2 4 6 8 10 

9 

18 20 

19 

The Connector Specifies the Table 



 page│8 

3.7  SW1 (Setting Switch)

3.7.1  Mailing Address 
Users can control up to 30 DS-CLS10-FRS4 drivers simultaneously using the RS-485 bus. The 

drive communication address setting adopts a 5-digit DIP switch, 

The address setting range is 1-32, where address 32 is reserved for the system, when the drive 

address setting is greater than 31, it needs to be set and saved using the upper debugging 

software. 

And the switch needs to be set to OFF (default is 1). 

Notes 

1) One controller can control up to 30 DS-CLS10-FRS4 drives simultaneously via
RS-485 bus.

2) The communication address setting of each drive must be unique, otherwise it
will cause communication errors.

DIP switch Physical address 
(DEC) 

Displays the 
address (HEX) SW1 SW2 SW3 SW4 SW5 

ON ON ON ON ON 1 01H 

ON ON ON ON OFF 2 02H 

ON ON ON OFF ON 3 03H 
ON ON ON OFF OFF 4 04H 

ON ON OFF ON ON 5 05H 

ON ON OFF ON OFF 6 06H 
ON ON OFF OFF ON 7 07H 

ON ON OFF OFF OFF 8 08H 

ON OFF ON ON ON 9 09H 
ON OFF ON ON OFF 10 0AH 

ON OFF ON OFF ON 11 0BH 

ON OFF ON OFF OFF 12 0CH 
ON OFF OFF ON ON 13 0DH 

ON OFF OFF ON OFF 14 0EH 

ON OFF OFF OFF ON 15 0FH 
ON OFF OFF OFF OFF 16 10H 

OFF ON ON ON ON 17 11H 

OFF ON ON ON OFF 18 12H 
OFF ON ON OFF ON 19 13H 

OFF ON ON OFF OFF 20 14H 

The Connector Specifies the Table 



 page│9 

OFF ON OFF ON ON 21 15H 
OFF ON OFF ON OFF 22 16H 

OFF ON OFF OFF ON 23 17H 

OFF ON OFF OFF OFF 24 18H 
OFF OFF ON ON ON 25 19H 

OFF OFF ON ON OFF 26 1AH 

OFF OFF ON OFF ON 27 1BH 
OFF OFF ON OFF OFF 28 1C H 

OFF OFF OFF ON ON 29 1D H 

OFF OFF OFF ON OFF 30 1E H 
OFF OFF OFF OFF ON 31 1F H 

OFF OFF OFF OFF OFF customize customize 

3.7.2  Communication Baud Rate 
DIP switch 

baud rate（bps） 
SW6 SW7 

ON ON 4800 

ON OFF 9600 
OFF ON 19200 

OFF OFF 38400 

3.7.3  Test Run 
The pilot run function is used to verify the performance of the drive. When the power is off, set the SW8 

switch to ON. Then power on in the state of no pulse input, dial the SW8 DIP switch from ON to OFF, 

and then dial ON gear from OFF gear after 1 second, that is, start the trial run function (the motor cycles 

forward and reverse movement at a speed of 1 revolution/second). 

4. Input Loop Diagram
4.1  Command Pulse Input Loop (differential drive) 
AM26LS31 equivalent 

The Connector Specifies the Table 



 page│10 

4.2  Command Pulse Input Loop (collector) 
AM26LS31 equivalent 

Notes This product is compatible with+5V/+24V signal and there is no need to 
connect current limit resistor in serial when 24V input. 

4.3  Sensor, Digital Input Loop (contacts) 

4.4  Sensor, Digital Input Loop (collector output) 

Input Loop Diagram 



 page│11 

5. Output Loop Diagram
5.1  Digital Output Loop (relay connection) 

Notes When the relay is connected, it is required to connect diodes at both ends 
of the relay (such as IN4000 series) 

5.2  Digital Output Loop (optocoupler connection) 

5.3  Differential Output Loop (encoder output) 

Notes 
The encoder output has no optocoupler isolation, please confirm again whether 
the wiring is correct and whether there is a short circuit before powering on, so 
as to avoid introducing the 24V power supply on the port and damaging the host 
computer and driver. 

Output Loop Diagram 



 page│12 

6. LED Indicator

6.1 Status display
Display Description 

Motor rotation display 

The light is on when the motor rotates and turns off when it stops 

Device enabled state

The device enabling light is on, and the device disabling light is off 

Displayed in the command input 

The light is on in the command input 

CONNECT display 

The light is on in CONNECT 

6.2 The Site Number is displayed 
The site number is displayed verbatim, ending with H, and only the status is displayed after the 

connect connection is successful. 
Example : Site number : 45H 

6.3 Alarm display 
The alarm code is verbatim and flashes and ends with E 

Example : Alarm code E8 

LED Indicator 



 page│13 

Function Alarm 
code 

Alarm/warning 
(Hex/Dec) Description 

Motor overcurrent Alarm AH (10) Motor phase current overcurrent or drive failure 
The motor is out of 
phase Alarm bH (12) The motor is not connected 

Spare Alarm CH (13) Factory reserved 

Undervoltage Alarm dH (14) The power input is less than 18V 

Overvoltage Alarm EH (15) The power input is greater than 60V 

Superheating Alarm FH (16) The driver radiator temperature reaches above 85°C 
MOS transistor driver 
voltage failure Alarm 10H (17) MOS transistor driver voltage failure 

Spare Alarm 11H (18) Factory reserved 

Spare Alarm 12H (19) Factory reserved 

Spare Alarm 13H (20) Factory reserved 
Abnormal EEPROM 
data writing Alarm 14H (21) EEPROM data write exception 

Overspeed error Alarm 18H (24) The motor runs faster than the maximum system value 
Position out of 
tolerance Alarm 19H (25) Position out of tolerance 

Current overload Alarm 1AH (26) Current overload 

Encoder error Alarm 1BH (27) The encoder is wired incorrectly 
EEPROM data read 
exception Warn 100H (256) EEPROM data read exception 

The bus voltage is 
unstable Warn 200H (512) The bus voltage is unstable 

Emergency stop Warn 400H (1024) Emergency stop 

Positive limit Warn 800H (2048) On positive limits or super positive and soft limits 

Negative limit Warn 1000H (4096) On the negative limit or above the negative soft limit 

Return to origin failed Warn 2000H (8192) Return to origin failed 

LED Indicator 



 page│14 

7. Form Factor (mm)

8. Control Parameters

Notes Communication parameters are unofficial version, and some parameters are fixed 
and not set open 

8.1  Controller Basic Status (Class 01) 

adr word content recount range 
/ unit 

0100 1 Motor current Real-time motor current value 0.1%A 

0101 1 Input voltage Current input voltage 1%V 
0104 2 Set up segments Set breakdown values ppr 

0106 1 Pulse mode 1 is pulse + direction mode, 2 is double pulse mode 1-2 

0108 1 Failure code The alarm code, see 1-2, shows "0" as no fault - 
0109 1 Running status Drive operating status, see 1-1 - 

0110 1 Hardware version Drive hardware version - 

0111 1 Software version Drive software version - 
0117 2 Current location Target location pulse 

0119 1 Actual speed display - 0.01rps 

Form Factor / Control Parameters 



 page│15 

0126 2 Physical location Run a live location pulse 

0174 1 IO Select Multi-segment Run 
Paragraph - - 

0176 1 Multi-segment writing error 
No - - 

0178 1 Multi-stage operation No - - 

0135 1 Enter the port status Data bits Bit7 …….. Bit1 Bit0 
Enter the port IN7 …….. IN2 IN1 

0136 1 Output port status Data bits Bit3 Bit2 Bit1 Bit0 
Output port OUT4 OUT3 OUT2 OUT1 

8.2 Basic Parameter Setting (Class 02) 
adr word content recount range/unit 

0201 1 Motor direction switching Select the direction in which the motor runs 0～1 

0213 1 Half-flow ratio Stop current ratio (active in open-loop mode) 10%~120% 

0217 1 Motor control mode 
0: Open loop 
1: Closed loop 
Default: 1 

0～1 

0224 1 Angular filtering The smaller the value, the smoother the motor runs, 
but the higher the latency 1~700 

0234 1 Digital filtering The filter coefficient of the input pulse, the larger the 
value, the lower the input frequency response 1~15 

0241 1 Input current Set the current 100~4500 
0.1A~-4.5A 

0242 2 Set up segments Number of pulses per revolution 200~ 
102400ppr 

0244 1 Pulse mode 1: Pulse + direction mode 
2: Double pulse mode 1~2 

0245 1 Half-flow time Time delay time to enter half-flow after motor stops 
operation (active in open-loop mode) 1~32767ms 

0296 1 Operating mode 
selection 

0: External pulse 
1: Internal pulse 
Default: 0 
Note: After the function is modified, the power needs 
to be turned off and restarted 

0~1 

0298 1 Mailing address Default: 1 1~255 

0299 2 Communication baud 
rate Default: 19200 1600~ 

115200 

8.3  Closed-Loop Parameter Setting (Class 04) 
adr word content recount range/unit 

0246 1 Encoder resolution Resolution = Number of encoder lines x 4 200~65535 

0247 2 Pulse width in place 
Reach the target position close to the distance, 
output the signal in place 
Default: 0 

1~1000 
Encoder 
resolution 

0251 1 Speed ring Kp Speed ring Kp 0～30000 

0252 1 Speed ring Ki Speed ring Ki 0～30000 

Control Parameters 



 page│16 

0255 1 Location ring Kp Location ring Kp 0～30000 

0258 1 Location out-of-
tolerance threshold In units of encoder resolution 

0～30000 
Encoder 
resolution 

8.4 Control Parameters (Class 05) 
adr word content recount range/unit 

0301 1 Startup frequency Default: 100 1~2000 
0.01~20rps 

0302 1 Stop frequency Default: 100 1~2000 
0.01~20rps 

0303 1 acceleration Default: 100 5~10000rps2

0304 1 Deceleration Default: 100 5~10000rps2

0305 1 Return to origin mode 
Return to origin mode, 
0: Clockwise back to origin 
1: Return counterclockwise to the origin 

0~1 

0306 1 Fixed-length running 
speed Default：1000 1~5000 

0.01~50rps 

0307 1 Speed mode runs speed 
In speed mode, the direction of operation coincides 
with the direction of speed 
Default：1000 

-5000~5000
-50~50rps

0308 1 Jog running speed Default：1000 1~5000 
0.01~50rps 

0309 1 Return to origin running 
speed Default: 1000 1~5000 

0.01~50rps 

0310 1 Return to the origin 
peristaltic speed 

The speed of operation after hitting the origin 
Default: 1000 

1~5000 
0.01~50rps 

0311 2 Return to origin offset Default: 0 -2000000000~
2000000000
pulse

0313 2 Output pulse 

Run the trip 
Absolute position mode: Runs to a specified location 
Relative Position Mode: Run the set offset stroke 
Default: 0 

-2000000000~
2000000000
pulse

0317 2 Positive and soft limits 
Default: 2000000000 
Note: The process of returning to the origin is not 
valid 

-2000000000~
2000000000
pulse

0319 2 Negative soft limit 
Default: -2000000000 
Note: The process of returning to the origin is not 
valid 

-2000000000~
2000000000 
pulse 

0321 2 Sets the current location Default: 0
 

-2000000000~
2000000000 
pulse 

0323 1 Control commands 

0: Empty 
1: Absolute operation, running to the set distance, 

the running direction is determined by the distance 
plus or minus, the speed plus and minus values 
are invalid, and the modification of the target 
position during operation is effective 

2: Relative operation, run with set distance and 
running speed, the running direction is determined 
by the distance plus or minus, the speed plus and 
minus value is invalid, and the modification of the 

0~29 

Control Parameters 



 page│17 

moving distance during operation is invalid 
3: Speed mode 
4: Positive jogging 
5: Reverse jogging 
6: Decelerate and stop 
7: Emergency stop 
8: Set the current position, only when the motor stops 
12: Return to the original point 
13: Alarm clearance 
14: Multi-segment data verification 
15: Multi-segment data saving 
16: Multi-segment data starts 
17: Multi-segment data paused 
18: End of multi-segment data 
Default: 0 

0324 1 Internal control switch 

Data bits Bit1 Bit0 
function Negative soft 

limit 
Positive and soft 
limits 

1: Turn on the function, 0: Turn off the function 
Default: 0 

0-65535

0327 1 Number of multiple 
paragraphs Default: 1 1~32 

0328 1 Multi-segment selection 

Default: 0 
Note: If the IO port is configured with the multi-
segment selection feature, the IO configuration 
multi-segment selection takes precedence 

0~31 

8.5 Input Block Designation (Class 06) 

adr word content recount range 
/unit 

0400 1 IN1 function selection 

0: Empty 
1: Absolute operation, running to the set distance, the 

running direction is determined by the distance plus or 
minus, the speed plus and minus values are invalid, and 
the modification of the target position during operation is 
effective 

2: Relative operation, run with set distance and running 
speed, the running direction is determined by the 
distance plus or minus, the speed plus and minus value 
is invalid, and the modification of the moving distance 
during operation is invalid 

3: Speed mode 
4: Positive jogging 
5: Reverse jogging 
6: Decelerate and stop 
7: Emergency stop 
8: Set the current position, only when the motor stops 
9: Positive limit 
10: Negative limit 
11: Origin signal 
12: Return to the original point 
13: Alarm clearance 
14: Multi-segment data verification 

0~30 

Control Parameters 



 page│18 

15: Multi-segment data saving 
16: Multi-segment data starts 
17: Multi-segment data paused 
18: End of multi-segment data 
20: Enablement 
25: Select Bit0 for the IO port configuration multi-segment 
26: The IO port is configured with multiple segments to 

select Bit1 
27: The IO port is configured with multiple segments to 

select Bit2 
28: The IO port is configured with multiple segments to 

select Bit3 
29: IO port configuration multi-segment selection Bit4 
Default: 0 

0401 1 IN2 function selection The setting content is the same as IN1 (default: 0) 0~30 

0402 1 IN3 function selection The setting content is the same as IN1 (default: 0) 0~30 

0403 1 IN4 function selection The setting content is the same as IN1 (default: 0) 0~30 
0404 1 IN5 feature selection The setting content is the same as IN1 (default: 0) 0~30 

0405 1 IN6 Function Selection 
(CCW Port) 

The setting content is the same as IN1 (default: 0) 
(When the external pulse is off, the port function fails) 0~30 

0406 1 IN7 Function Selection 
(CW Port) 

The setting content is the same as IN1 (default: 0) 
(When the external pulse is off, the port function fails) 0~30 

0429 1 Universal numeric input 
logic 

0410  1 Pseudo communication 
setting IN1 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 0~1 

0411 1 Pseudo communication 
setting IN2 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 0~1 

0412 1 Pseudo communication 
setting IN3 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 0~1 

0413 1 Pseudo communication 
setting IN4 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 0~1 

0414 1 Pseudo communication 
settings IN5 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 0~1 

0415 1 Pseudo communication 
setting IN6 0: OFF (initial value 0) 0~1 

0416 1 Pseudo communication 
settings IN7 

0: OFF (initial value 0) 
1: ON (action that triggers IN1 configuration) 
(When the external pulse is used, the pseudo-
communication port function fails) 

0~1 

8.6 Output Block Designation (Class 07) 
adr word content recount range/unit 

0420 1 OUT1 function selection 

100: Generic port 
101: Alarm output function: 

There is an output signal when there is no alarm, 
and no output signal when there is an alarm. 

102: Signal in place 
103: Enable control output: 

There is an output signal when offline, and no output 
signal when enabled. 

(Default value: 101) 

100~104 

Control Parameters 



 page│19 

0421 1 OUT2 function selection The setting content is the same as OUT 1 (default: 100) 100~104 

0422 1 OUT3 function selection The setting content is the same as OUT 1 (default: 100) 100~104 
0423 1 OUT 4 feature selection The setting content is the same as OUT 1 (default: 100) 100~104 

0428 1 Universal digital output 
control 

Output port function selects 100 
Data bits Bit3 Bit2 Bit1 Bit0 
Output port OUT4 OUT3 OUT2 OUT1 

0430 1 Digital output logic 
Corresponds to the output port logic 
Data bits Bit3 Bit2 Bit1 Bit0 
Output port OUT4 OUT3 OUT2 OUT1 

8.7  Multi-segment Position Mode (Class 08) 
The multi-segment address range is 1024~1536, and up to 256 data can be set 

Multi-segment command format 
Command 

code word content recount range/unit 

1 2 Absolutely run Parameter 1: Running position 
Default: 0 

-2147483647~
2147483647
pulse

2 2 Relative operation Parameter 1: Running position 
Default: 0 

-2147483647~
2147483647 
pulse 

51 1 Startup speed Default: 100 1~2000 
0.01~20rps 

53 1 Stop speed Default: 100 1~2000 
0.01~20rps 

54 1 Fixed length speed Default: 1000 1~5000 
0.01~50rps 

61 1 acceleration Default: 100 5~10000rps2

62 1 Deceleration Default: 100 5~10000rps2

65 2 Wait for the jump A (high 8 bits) / B (low 8 bits) / C (low 16 bits),  
A: fixed at 0 / B: jump address / C: Waiting time - 

66 2 Jump sequence A (high 16 bits) / B (low 16 bits), 
A: number of cycles / B: jump address - 

100 1 End of multiple 
segments Each paragraph should end with an end code - 

The multi-segment position mode function is a working method that combines multiple position 

segments in a certain order, triggers the movement through an external IO signal, and completes a 

series of position segment actions. This function can be regarded as a multi-segment combination of 

position mode, the user can store the description parameters of several position segments such as 

acceleration and deceleration, pulse number, etc. in advance in EEPROM, and only need to provide a 

trigger signal to complete the work when these position segments need to be enabled, and its working 

process description is shown in the figure below. 

Control Parameters 



 page│20 

Port selection corresponds to multiple segments 

Bit4 Bit3 Bit2 Bit1 Bit0 Location segment 

0 0 0 0 0 1 

0 0 0 0 1 2 
0 0 0 1 0 3 

0 0 0 1 1 4 

… … … … … … 
1 1 1 0 1 30 

1 1 1 1 0 31 

1 1 1 1 1 32 

IO Select the port 
1. Input port configuration multi-segment selection function 25~29: IO port configuration multi-se

gment selection Bit0~Bit4

Input port configuration multi-segment start function 15: multi-segment data start

2. Port selection corresponds to multiple segments

Example: IN1 port function configuration 25, Bit0 

IN3 port function configuration 26, Bit1 

The IN1~ IN7 function can be configured according to the requirements 

IN3  Bit1 IN1  Bit0 Location segment 

0 0 1 

0 1 2 
1 0 3 

1 1 4 

Notes 
"1" in the table indicates a valid hold signal 

The segment selection signal needs to be completed more than 20ms in advance 
of the start signal 

Control Parameters 



 page│21 

Example: Writing, validating, and saving multi-segment parameters *Note: The data in the example is 

expressed in base 16 

1. Multi-segment parameter settings

[Command 1] the current line number 0: the fixed length speed is set to 1000, that is, 10rps, 

01        10        04 00        00 02        04        00 36        03 e8  21 DF 
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① :  Mailing address 0x1

② :  MODBUS WRITE COMMAND 0x10

③ :  Mailing address 0x400 (decimal means 1024)

④ :  Write 2 pieces of data

⑤ :  Write 4 bytes

⑥ :  Data 1, fixed-length speed command 0x0036 (decimal means 54)

⑦ :  Data 2, fixed length speed value 0x03E8 (decimal means 1000)

⑧ :  CRC check

[Command 2] current line number 1: relative operation, running distance 10000 pulses 

01       10       04 02       00 03       06       00 02       27 10 00 00       20 CB 
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① :  0x1 mailing address

② :  MODBUS write command 0x10

③ :  Mailing address 0x402 (decimal means 1026)

④ :  Write 3 data

⑤ :  Write 6 bytes

⑥ :  Data 1, relative to the command 0x0002 (decimal means 2)

⑦ :  Data 2, parameters: running pulse value 0x2710 (decimal means 10000)

⑧ :  CRC verification

[Command 3] current line number 2: wait 1000ms 

01      10      04 05      00 03      06      00 41      03 E8 00 03      1F DE 
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① :  Mailing address 0x1

② :  MODBUS write command 0x10

③ :  Mailing address 0x405 (decimal means 1029)

Control Parameters 



 page│22 

④ :  Write 3 data

⑤ :  Write 6 bytes

⑥ :  Data 1, relative to the 0x0041 of running the command (decimal means 65)

⑦ :  Data 2，Data 03 E8 00 03 Converted to 00 03 03 E8 *Note: 4 bytes of data, the lower 16 bits
  A  B   C 

First, the high 16 bits last 

Parameter A: The system reservation is set to 0 by default, do not set the value 

Parameter B: Wait for jump line 3, the current waiting command line is 2 

Parameter C: wait time 0x03E8 (decimal means 1000ms) 

⑧ :  CRC check

[Command 4] current line number 3: The recycle execution runs 10 times relative to each other 

01      10      04 08      00 03      06      00 42      00 01 00 0A      DB 92 
① ② ③ ④ ⑤ ⑥ ⑦ ⑧

① :  0x1 mailing address

② :  MODBUS write command 0x10

③ :  Mailing address 0x408 (decimal means 1032)

④ :  Write 3 data

⑤ :  Write 6 bytes

⑥ :  Data 1, relative to the 0x0042 of running the command (decimal means 66)

⑦ :  Data 2, Data 00 01 00 0A Convert to 00 0A 00 01 *Note: 4 bytes of data, the lower 16 bits
A    B  

⑧ :  First, the high 16 bits last

Parameter A: the number of action jumps 0xA (decimal means 10 jumps) 

Parameter B: Jump to line 1 and perform the relative run again 

⑨ :  CRC check

[Command 5] current line number 4: End of action 

01      06      04 0B      00 64      F8 D3 
① ② ③ ④   ⑤ 

① :  0x1 mailing address

② :  MODBUS write command 0x06

③ :  Mailing address 0x40B (decimal means 1035)

④ :  End of data segment 0x64 (decimal means 100)

⑤ :  CRC check

Control Parameters 



 page│23 

2. Multi-segment parameter checking

01      06      01 43     00 0E      F8 26 
① ② ③ ④  ⑤ 

① :  0x1 mailing address

② :  MODBUS write command 0x06

③ :  Mailing address 0x0143 (decimal means 323, write communication command)

④ :  Data multi-segment data check 0xE (decimal representation 14)

⑤ :  CRC check

3. Multi-segment parameter saving

*Note: Data can only be saved after the data verification is successful, otherwise the data can
not be saved normally 

01       06       01 43      00 0F      39 E6 
① ② ③ ④     ⑤ 

① :  0x1 mailing address

② :  MODBUS write command 0x06

③ :  Mailing address 0x0143 (decimal means 323, write communication command)

④ :  Data Multi-segment data check 0xF (decimal representation 15)

⑤ :  CRC check

9. Message Format
The MODBUS protocol defines a protocol data unit (PDU) independent of the underlying comm

unication layer and the MODBUS protocol on the RS485 physical layer is mapped on the appli

cation data unit (ADU).

    Figure 1 ：Generic MODBUS frames 

The length constraint performed by the first MODBUS on the serial link limits the MODBUS P

DU size (maximum RS485ADU=256 bytes).  

Control Parameters / Message Format 



 page│24 

Therefore, for serial link communication, MODBUS PDU=256-server address (1 byte)-CRC (2-by

te)=253 bytes.  

Thereby:  

RS232 / RS485 ADU = 253 bytes + server address (1 byte) + CRC (2 bytes) = 256 bytes.The MODBUS 

protocol defines three types of PDUs. They are:  

a. MODBUS requests PDU, mb_req_pdu

b. MODBUS responds to PDU, mb_rsp_pdu

c. MODBUS abnormally responds to PDU, mb_excep_rsp_pdu

Definition mb_req_pdu as: 

mb_req_pdu = { function_code, request_data}, where 

function_code - [1 byte] MODBUS function code 

request_data - [n bytes], this field is related to function codes and typically includes information 

such as variable references, variables, data offsets, subfunction codes, and so on. 

Definition mb_rsp_pdu as:  

mb_rsp_pdu = { function_code, response_ data}, where 

function_code - [1 byte] MODBUS function code  

response_data - [n bytes], this field is related to function codes and typically includes information 

such as variable references, variables, data offsets, subfunction codes, and so on. 

Definition mb_excep_rsp_pdu as: 

mb_excep_rsp_pdu = { function_code, request_data}, where  

function_code - [1 byte] MODBUS function code + 0x80 

exception_code - [1 byte], the MODBUS exception code is defined in the following table. 

Message Format / MODBUS Transactions 



 page│25 

10. MODBUS Transactions

10.1  Definition of MODBUS Transactions

Figure 2：A state diagram of MODBUS transactions 

Once the server processes the request, establish a MODBUS response using the appropriate 

MODBUS server transaction.  

Based on the processing results, two types of responses can be established:  

1. A MODBUS normal response :

Response Function Code = Request Function Code

2. A MODBUS EXCEPTION RESPONSE :

a. Used to provide the client with information related to the errors found in the process of processing

b. Response function code = request function code + 0x80

c. Provide an exception code to indicate the cause of the error.

MODBUS Transactions 



 page│26 

10.2  MODBUS Responds Normally 

Upper computer Drive 

Figure 3: MODBUS transaction processing (error-free) 

10.3  MODBUS exception response 

Upper computer Drive 

Figure 4: MODBUS transaction processing (exception response) 

11. Data Encoding

MODBUS uses a big -Endian specification (i.e. high bits first, low bits last) to represent addresses and

data items.

Receive the response 

Function code Data requests 

Perform an action to 

Initiate the response 

Opcode Data response 

Start the request 

MODBUS Transactions 

Receive the response 

Function code Data requests 

Errors detected in 

operation, starting errors 

Error code Exception code 

Start the request 



 page│27 

12. Definition of Public Function Code
and Description of Function Code

Function code 
code Subcode Hexadecimal 

Data 
access 

Bit 
access 

Physical discrete input Read input discrete 02 02 

Internal bits or physical 
coils Enter memory 
Physical discrete input 

Read the coil 01 01 

Write a single coil 05 05 

Write multiple coils 15 0F 

16 Bit 
access 

Internal bits or 
physical coils Read input registers 04 04 

Enter memory 

Read multiple registers 03 03 

Write a single register 06 06 

Write multiple registers 16 10 

Read/write multiple registers 23 17 

Masked write registers 22 16 

File record access 
Read the file record 20 6 14 

Write a file record 21 6 15 

Encapsulate the interface Read the device 
identification code 43 14 2B 

The common function codes used by STAP according to communication needs are the yellow 

part of the above table 

03 (0x03) Read hold register 

06 (0x06) Write a single register 

16 (0x10) Write multiple registers 

12.1  03 (0x03) Read Hold Registers 
In a remote device, use this function code to read the contents of contiguous blocks of keep-registers. 

The requesting PDU states the starting register address and number of registers. Address registers 

from scratch. Therefore, addressing registers 1-16 is 0-15. 

Divide the register data in the response packet into two bytes per register, and adjust the binary content 

directly in each byte.  

For each register, the first byte includes the high bit, and the second byte includes the low bit. 

Definition of Public Function Code and Description of Function Code 



 page│28 

Request 

Function code 1 byte 0x03 

Start address 2 byte 0x0000 to 0xFFFF 

Number of registers 2 byte 1 to 125 (0x7D) 

Response 

Function code 1 byte 0x03 

Number of bytes 1 byte 2 x N* 

Register value N* x 2 bytes 

*N = Number of registers

Mistake

Error code 1 byte 0x83 

Exception code 1 byte 01 or 02 or 03 or 04 

Here is an example of requesting read registers 108-110: 

Request Response 

Domain name (hexadecimal) Domain name (hexadecimal) 
function 03 function 03 

High start address 00 Number of bytes 06 

Low start address 6B Register value Hi(108) 02 
High register number 00 Register value Lo(108) 2B 

Low register number 03 Register value Hi(109) 00 

Register value Lo(109) 00 

Register value Hi(110) 00 

Register value Lo(110) 64 

The contents of register 108 are represented as two hexadecimal byte values 02 2B, or decimal 555. 

The contents of registers 109-110 are expressed as hexadecimals 00 00 and 00 64, or decimal 0 and 

100, respectively 

Definition of Public Function Code and Description of Function Code 



 page│29 

Figure 5: Read the state diagram of the hold-and-register register 

12.2  06 (0x06) Write a Single Register 
In a remote device, use this function code to write a single hold register.  

The request PDU states the address of the register being written. Address registers from scratch. Therefore, 

address register 1 is 0.  

A normal response is a reply to a request that is returned after the contents of the register are written. 

Request 

Function code 1 byte 0x06 

Register address 2 bytes 0x0000 to 0xFFFF 

Register value 2 bytes 0x0000 to 0xFFFF 

Definition of Public Function Code and Description of Function Code 



 page│30 

Response 

Function code 1 byte 0x06 

Register address 2 bytes 0x0000 to 0xFFFF 

Register value 2 bytes 0x0000 to 0xFFFF 

*N = Number of registers

Mistake

Error code 1 byte 0x86 

Exception code 1 byte 01 or 02 or 03 or 04 

Here is an instance of request to write hexadecimal 00 03 to register 2: 

Request Response 

Domain name (hexadecimal) Domain name (hexadecimal) 
function 06 function 06 

Register address Hi 00 Output address Hi 00 

Register address Lo 01 Output address Lo 01 
Register value Hi 00 Output value Hi 00 

Register value Lo 03 Output value Lo 03 

Figure 6 : Write a single register state diagram 

Definition of Public Function Code and Description of Function Code 



 page│31 

12.3  16 (0x10) Write Multiple Registers 
In a remote device, use this function code to write blocks of continuous registers (1 to about 120 

registers).  

The value written by the request is described in the request data field. Each register divides the data 

into two bytes.  

The normal response returns the function code, start address, and number of registers to be written. 

Request 

Function code 1 byte 0x10 
Start address 2 bytes 0x0000 to 0xFFFF 
Number of registers 2 bytes 0x0001 to 0x0078 
Number of bytes 1 byte 2×N* 
Register value N*× 2 bytes value 

Response 

Function code 1 byte 0x10 

Start address 2 bytes 0x0000 to 0xFFFF 

Number of registe 2 bytes 1 to 123(0x7B) 

*N = Number of registers

Mistake

Error code 1 byte 0x90 

Exception code 1 byte 01 or 02 or 03 or 04 

Here is an instance of a request to write hexadecimal 00 0A and 01 02 to two registers starting
with 2: 

Request Response 

Domain name (hexadecimal) Domain name (hexadecimal) 
function 10 function 10 
Start address Hi 00 Start address Hi 00 
Start address Lo 01 Start address Lo 01 
Number of registers Hi 00 Number of registers Hi 00 
Number of registers Lo 02 Number of registers Lo 02 
Number of bytes 04 
Register value Hi 00 
Register value Lo 0A 
Register value Hi 01 
Register value Lo 02 

Definition of Public Function Code and Description of Function Code 



 page│32 

Figure 7: Writing a multi-register state diagram

List of exception codes: 

MODBUS exception code 

Code Name Meaning 

01 Illegal features 

For the server (or slave), the function code received in the query is not 
an allowable operation. This may be because the function code is only 
applicable to the new device and is not possible in the selected unit. 
At the same time, it is also pointed out that the server (or slave) 
handles such a request in an error state, for example: because it is 
not configured and asks to return a register value. 

02 Illegal data address 

The data address received in the inquiry is not permissible to the 
server (or slave). In particular, the combination of reference number 
and transmission length is invalid. For a controller with 100 registers, 
a request with offset 96 and length 4 will succeed, and a request with 
offset 96 and length 5 will result in exception code 02. 



 page│33 

03 Illegal data values 

The value included in the query is not permissible to the server (or 
slave). This value indicates a failure in the remaining structure of the 
combined request, for example, the implied length is incorrect. It does 
not mean that, because the MODBUS protocol does not know the 
significance of any special value of any particular register, the data 
item in the register that is committed for storage has a value that is not 
expected by the application. 

04 Slave equipment
failure 

An unrecoverable error occurs while the drive is trying to perform the 
requested operation. 

05 Confirm 

Use with programming commands. The server (or slave) has already 
accepted the request and is processing it, but it takes a long duration 
for these operations. Returning this response prevents timeout errors 
from occurring on the client (or master). The client (or master) can 
continue to send polling program completion messages to determine 
whether processing is complete. 

06 The slave is busy 
Use with programming commands. The server (or slave) is processing 
program commands for long durations. When the server (or slave) is 
idle, the user (or master) should retransmit the message later. 

08 Store parity errors 

Used with function codes 20 and 21 and reference type 6 to indicate 
that the extent does not pass the consistency check. 
The server (or slave) attempted to read the log file, but found a parity 
error in memory. The client (or master) can resend the request, but 
can request service on the server (or slave) device. 

0A Gateway paths are
not available 

Used with a gateway to indicate that the gateway cannot assign an 
internal communication path from an input port to an output port for 
processing requests. This usually means that the gateway is 
misconfigured or overloaded. 

0B 
The gateway target 
device response 
failed 

Used with a gateway to indicate that no response is obtained from the 
target device. Usually means that the device is not on the network. 

0C Send timeout
between bytes 

If the time between the previous byte and the next byte sent is greater 
than 1.5 characters in the same frame of data sent, an error occurs, 
the current frame of data is discarded, waiting for 3.5 characters to not 
receive the data sending error code, if there is data sending until 3.5 
characters are not received and then send the error code, the data 
received in between is discarded. 

OD 
Sending between 
frames is less than 
the minimum interval 

If a frame of data is successfully received and the data is received 
within less than 3.5 characters, an error occurs, waiting for the data 
transmission error code not received within 3.5 characters, if there is 
data transmission all the time, it is necessary to wait until there is no 
data received within 3.5 characters and then send the error code, and 
the data received in between them is discarded. 



 page│34 

No reply is returned for the request broadcast by the master node. Broadcast requests are typically 

used to write commands. All devices must accept write capability for broadcast mode. Address 0 is 

specifically used to represent broadcast data. 

14. MODBUS Address Rules
The Modbus addressing space has 256 different addresses.

0 1-47 48-255
broadcast address Child node separate address retain 

Address 0 is reserved as the broadcast address.    

All child nodes must recognize the broadcast address. 

Modbus masters have no addresses, only child nodes must have an address.  The address must be 

unique on the Modbus serial bus. 

Notes Correspondence address = value of DIP switch + 1 (drive address cannot be 0) 

MODBUS Master Node Working Mode / MODBUS Address Rules 

13. MODBUS Master Node Working Mode
The master node makes Modbus requests to child nodes in two modes:

a. In unicast mode, the master node accesses a child node at a specific address, and after the child

node receives and processes the request, the child node returns a packet (a reply) to  the master node.

In this pattern, a Modbus transaction consists of 2 packets: a request from the master node and a reply

from a child node.

Each child node must have a unique address (1 to 247) so that it can be addressed independently from

other nodes.

b. In broadcast mode, the master node sends requests to all child nodes.



 page│35 

15. Master / Slave Communication Timing Diagram

Figure 8: Master/slave communication timing diagram for various scenarios 

Master / Slave Communication Timing Diagram 



 page│36 

16. RTU Transmission Mode
The format of each byte (11 bits) in RTU mode is:

Encoding system: 8–bit binary

Each 8-bit byte in the message contains two 4-digit hexadecimal characters (0–9, A–F)

Bits per Byte: 1 starting bit

8 data bits, the least significant bit is sent first

1 bit as parity

1 Stop bit

Modbus message RTU frame
The Modbus message is constructed by the transmitting device as a frame with known start and end

tags. This allows the device to receive a new frame at the beginning of the message and to know wh

en the message ends. Incomplete messages must be detectable and error flags must be set as a re

sult. In RTU mode, message frames are distinguished by idle intervals of at least 3.5 characters in le

ngth. In the following sections, this timeframe is called t3.5.

Figure 9: RTU message frame 

The entire message frame must be sent in a continuous stream of characters.  

If the idle interval between two characters is greater than 1.5 character time, the message frame is 

considered incomplete and should be discarded by the receiving node. 

baud rate Message frame free 
separator 

Spaces between 
bytes 

Response timed 
out 

Conversion 
delay 

>=19200 bps >=2ms <=0.8ms 1s 200ms 

14400 bps >=2.7ms <=1.1ms 1s 200ms 
9600 bps >=4ms <=1.7ms 1s 200ms 

4800 bps >=8ms <=3.4ms 1s 200ms 

2400 bps >=16ms <=6.8ms 1s 200ms 

RTU Transmission Mode 



 page│37 

17. CRC Check
CRC contains a 16-bit value consisting of two 8-bit bytes.

The CRC field is appended to the message as the last domain of the message. After calculation, the

low byte is appended first, followed by the high byte. The CRC high byte is the last subsection of the

message sent.

Figure 10: CRC 16 calculation algorithm 

XOR = XOR  

N = byte of information bits  

POLY = CRC 16 Polynomial Computation = 1010 0000 0000 0001 

(Generate a polynomial =1+  + + ) 

In CRC 16, the first byte sent is the low byte. 

CRC Check 



 page│38 

The function takes two parameters:  

unsigned char *puchMsg;  A pointer to a buffer containing the binary datagram used to generate the 

CRC  

unsigned short usDataLen;  The number of bytes in the message buffer 

CRC generation function  

unsigned short CRC16 ( puchMsg,usDataLen )  /* The function is returned as an unsigned short type 

 CRC */  

unsigned char *puchMsg ;  /*  The message used to calculate the CRC */ 

unsigned short usDataLen ;  /*  The number of bytes in the message */  

{  

unsigned char uchCRCHi = 0xFF ;  /* High-byte initialization of the CRC */ 

unsigned char uchCRCLo = 0xFF ;  /* Low-byte initialization of the CRC */ 

unsigned uIndex ;  /* CRC queries table indexes */  

while (usDataLen--)  /* Complete the entire packet buffer */  

{   

uIndex = uchCRCLo ^ *puchMsgg++ ;  /*  Calculate the CRC */  

uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex} ;  

uchCRCHi = auchCRCLo[uIndex] ;  

}  

return (uchCRCHi << 8 | uchCRCLo) ;  

} 

High-byte tables  

/* The CRC value of the high-order byte  */  

static unsigned char auchCRCHi[] = {  

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 

0x00, 0xC1, 0x81,   

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 

0x40, 0x01, 0xC0,   

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 

0x81, 0x40, 0x01,   

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 

0xC0, 0x80, 0x41,   

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 

0x00, 0xC1, 0x81,   

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 

0x41, 0x01, 0xC0,   

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 

CRC Check 



 page│39 

0x80, 0x41, 0x01,   

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  0x80, 0x41, 0x00, 

0xC1, 0x81, 0x40,   

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,  

0x00, 0xC1, 0x81,   

0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,  

0x40, 0x01, 0xC0,   

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0 x00, 0xC1, 0x81, 0x40, 0x00, 0xC1,  

0x81, 0x40, 0x01,   

0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,  

0xC0, 0x80, 0x41,   

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,  

0x00, 0xC1, 0x81,   

0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,  

0x40, 0x01, 0xC0,   

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,  

0x80, 0x41, 0x01,   

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,  

0xC0, 0x80, 0x41,   

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,  

0x00, 0xC1, 0x81,   

0x40  

} ; 

Low-byte table  

/* The CRC value of the low-order byte  */  

static char auchCRCLo[] = {  

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,  

0x05, 0xC5, 0xC4,  

0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 

0x0B, 0xC9, 0x09,  

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE,  

0xDF, 0x1F, 0xDD,  

0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2,  

0x12, 0x13, 0xD3,  

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,  

0x36, 0xF6, 0xF7,  

CRC Check 



 page│40 

0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E,  

0xFE, 0xFA, 0x3A,  

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B,  

0x2A, 0xEA, 0xEE,  

0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27,  

0xE7, 0xE6, 0x26, 

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,  

0x63, 0xA3, 0xA2,  

0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD,  

0x6D, 0xAF, 0x6F,  

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8,  

0xB9, 0x79, 0xBB,  

0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 

0x74, 0x75, 0xB5,  

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,  

0x50, 0x90, 0x91,  

0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55,  0x95, 0x94,  

0x54, 0x9C, 0x5C,  

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59,  

0x58, 0x98, 0x88,  

0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D,  

0x4D, 0x4C, 0x8C,  

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86 , 0x82, 0x42, 0x43, 0x83,  

0x41, 0x81, 0x80, 

0x40  

}; 

CRC Check 



 page│41 

18. Line-MODBUS Definition
MODBUS solutions on serial links should implement a "2-wire" electrical interface in accordance with

the EIA/TIA-485 standard.

Figure 11: 2-Line general topology 

Line-MODBUS Definition 



 page│42 

International 

Customer 

Person in Charge : 

Daniel Jang 

daniel@dingsmotion.com 

Building 1#, 355 Longjin Road, 

Changzhou Economic Development 

Zone, Jiangsu, China 

+86-519-85177826, 85177827

North America 

Customer 

Person in Charge : 

Nicolas Ha 

sales@dingsmotionusa.com 

335 Cochrane Circle Morgan Hill, 

CA 95037 

+1-408-612-4970

China 

Customer 

Person in Charge : 

Sweet Shi 

info@dingsmotion.com 

Building 1#, 355 Longjin Road, 

Changzhou Economic Development 

Zone, Jiangsu, China 

+86-519-85177826, 85177827

It is prohibited to copyright or replication of the part or whole of user manual without permission. 

+86-0519-8517 7825

+86-0519-8517 7807

Building 1#,355 Longjin Road, Changzhou 

Economic Development Zone, Jiangsu, China 

www.dingsmotion.com 

mailto:daniel@dingsmotion.com
mailto:sales@dingsmotionusa.com



